
Journal of  Statistical Physics, Vol. 15, No. 1, 1976 

Asymptotic Time Behavior of Correlation Functions. 
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On the basis of the mode-coupling theory weobtain the long-time behavior 
~t-a12 for the kinetic, potential, and cross-terms in the Green-Kubo 
integrands, expressed completely in terms of transport coefficients and 
thermodynamic quantities. All two-mode amplitudes are explicitly evaluated 
in terms of measurable quantities such as specific heats, thermal expansion 
coefficients, etc. 
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1. I N T R O D U C T I O N  

We propose to analyze the long-time behavior (1) of equilibrium current- 
current correlation functions by means of the mode-coupling theory, a brief 
account of  which has been given in a previous publication. (2) The results 
derived here are, besides those in Ref. 2, also presented by Pomeau (3~ and 
Kawasaki. (4) Our results agree by and large with the findings of these authors; 
where they differ, we believe ours to be correct. The reason we return to these 
results is that no coherent and complete derivation has been published. 
Moreover, we believe to have simplified the computations considerably and 
thus to have added to the transparency of the fairly involved amplitudes for 
the long-time tails. In paper I(4) of this series we have analyzed the kinetic 
parts of the correlation functions. A systematic extension of the basic ideas 
of paper I to more general currents leads to the so-called mode-coupling 
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formula as a valid description for the dominant long-time behavior of the 
current-current  correlation functions. Since the mode-coupling theories are 
of  general importance beyond the specific goal of  these papers, a separate 
paper is devoted to this subject3 s) The present paper will be of a more 
technical nature, in the sense that we calculate the long-time behavior of  the 
correlation functions and evaluate the corresponding coefficients, starting 
f rom the assumption that the mode-coupling formula adequately describes 
these quantities for long times. 

The correlation functions considered are of  the form 

C~(t) = l i m w ~  V-l(J~(O)J~(t)) 

and the time integrals of  the functions C~(t) are the Green-Kubo  expressions 
for the transport  coefficients. The currents J~ are the so-called projected or 
subtracted currents, which are related to the microscopic energy and momen- 
tum currents. In general, these currents consist of  purely kinetic contributions 
J ~  as well as potential contributions J~r which involve the intermolecular 
potential. In paper I we have discussed the correlation functions C~K(t), in 
which the currents are replaced by their kinetic parts, and we have shown 
that these functions behave as t-a/2 for long times, where d is the dimen- 
sionality of  the system. In this paper these results are extended to include 
potential contributions, for which the same long-time behavior will be 
obtained. 

In the remaining part  of  this section we introduce the relevant quantities; 
Section 2 presents the mode-coupling formula, and Section 3 is devoted to 
the explicit evaluation of the dominant long-time contributions. 

The Green-Kubo  formulas express the transport  coefficients as time 
integrals over the corresponding correlation functions, and we use normaliza- 
tions such that 

~ = ( ~ / r  dt C~(t); 

fo g = ~  dtG(t); 

D, = ([3/p dt G ( t )  

~1 = dt C,( t ) 

(1) 

Here, A is the heat conductivity, Dz is the longitudinal diffusivity, ~ is the 
bulk viscosity, ~ is the shear viscosity, and T = (kB/3) -1 is the temperature; 
the mass density p = ran, where n is the equilibrium number density and m 
is the mass of  a fluid particle. The longitudinal diffusivity and both viscosities 
are not independent t ransport  coefficients, but are related 4 to each other as 

4 The quantities ~7, ~, and pD~ are related to the components of the viscosity tensor ~=a~0, 
which is an isotropic tensor of rank four and where (~,/3, ~,, 8) label the d Cartesian 
components (x, y, z,...). This can be seen by inspecting the expressions for the currents 
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pDz = 2 d - ~ ( d -  I)~7 + ~. The  cur ren t -cur ren t  correlat ion functions are 
defined as 

C~(t) = l im V-~(J~(O)J~(t)) (2) 
V-+ co 

Here,  ( . . . )  denotes an average over  a grand  canonical  ensemble,  charac-  
terized by the parameters  fi and  v = fl~, where tL is the chemical potent ial ;  
V is the volume of  the system, and the the rmodynamic  limit is taken as the 
final step. The  label i takes the values ~, l, ~, and  n, and J~(t) is the projected 
current  at  t ime t with initial value J~(O), defined as 
J~ = Jx ~ - h J,: n (3a) 

J ~ = J x ~ - p V -  (~e )  ( H - ( H ) ) -  (~n)  ( N - ( N )  ) (3b) 

J~=d-~j~=d-~J~-pV- (H-(H))- N (N-(N)) (3c) 
x 

(3d) J~ = J x y  

with 

1 f ~  ar 
Jx e = e~V~x - ~ r~i,x ~r~i,e vie 

i ~ l  i r  

N 

t = 1  

(4a) 

v~ (4b) 

1 ~ er 
- -  rti,~ 6qr~t, B 

(4c) 

Cartes ian componen t s  in a d-dimensional  system are denoted by the sub- 
scripts (a, t3) = (x, y, z,...) and  the summat ion  convent ion is used for  repeated 
Greek  indices. The  equil ibrium enthalpy per  particle is h = (e + p)/n, where 

Jn, J~, and J~. Such a tensor contains only two independent constants. If we choose 
them as ,/and ~, we have 

From this relation it follows that 

where the summation convention is used for repeated Greek indices. For the correlation 
functions a similar relation holds, i.e., 

C,(t) = 2 d - * ( d -  1)C.(t) + C~(t) 
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e and p are, respectively, the energy density and pressure in thermal equilib- 
rium. The Hamiltonian of the system of N identical fluid particles is given by 

N N 

H = ~,  �89 m + �89 ~ ~,  O(r+,) (5) 
i = 1  + ~ J  

where v~ is the velocity of the ith particle and r+ is its position, with r+j = 
r+ - rj. The intermolecular potential is O(r). The microscopic energy e+ of 
particle i is defined as 

e~ = �89 2 + �89 ~.. r (6) 
t (  ~ i) 

The currents J, can in general be separated into a kinetic part j r  and a 
potential part J,| with 

j ,  = j E  + j+  (7) 

where the kinetic projected currents are given by 

= t = 1  

N 

J,~ = ~ m(~px - d - l ~ ?  ) 
+=-, (8) 

N 

+ = 1  

The potential parts are given through (3), (7), and (8). The separation (7) of 
the currents induces a separation of the correlation functions 

C,(t) = C~r(t) + 2C~+(t) + C~| (9) 

where 

C~8(t) = lira V -  I(J+A(O)JtB(t)} (10) 
V--* oO 

with A and B equal to K or ~. 
Although the concept of kinetic currents is clear, the subtracted terms 

in (8) may seem rather arbitrary, and therefore also the separation made in 
(7). The subtracted parts in (8) are in fact chosen such that the kinetic 
currents j+K satisfy the same set of orthogonality conditions (to be discussed 
below) as the full currents J+; and so does ,Jr++ by virtue of (7). If one were to 
split J+ differently into a kinetic part and a potential part, the correlation 
functions C~B(t) would in general approach constants for long times, and 
the mode-coupling theory would not adequately describe the long-time 
behavior of C~B(t). 
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2. M O D E - C O U P L I N G  F O R M U L A  

We are interested in the long-time behavior of correlation functions. In 
paper I we have shown that the decay of  the correlation functions for long 
times is basically governed by the decay of  products of hydrodynamic fields, 
which are the macroscopic energy density, number density, and momentum 
density. The extension of  this theory to include potential as well as kinetic 
parts of the currents J~ turns out to be equivalent to the mode-coupling 
theory. In this paper we will assume the validity of  the mode-coupling theory 
as a description of the correlation functions for long times, and we show 
how the t -  ~/2 tails can be obtained, as well as how the exact coefficients can 
be evaluated. The justification of this procedure is given elsewhereY ) 

Our basic assumption is therefore that for long times the dominant 
contributions to the correlation functions of projected currents are given by 
the mode-coupling formula, 

C,(t) ~_ lira V -1 ~ � 8 9  [(J,, akUa~k)] 2 exp[(zk" + zkOt] 
'g  -.* r R t~Y 

(11) 

The superscripts/z and v label the d + 2 hydrodynamic modes H, cr = +, and 
e~ (i = 1,..., d - 1), where H indicates the heat mode, cr = + labels the two 
sound modes, and E~ ( i =  1 ..... d -  l) labels d -  1 shear modes of the 
system. We have also introduced an inner product between two microscopic 
quantities ak and bq as 

(a,,, b . )  = V-l<a, ,*bq> (12) 

where, due to translation invariance of the equilibrium state, 

(ak, bq) = (ak, bk) 3k.q (13) 

Here 8k,q is a Kronecker delta function. In the thermodynamic limit the 
summation over the reciprocal lattice of wave vectors k may be replaced by 
an integration, which yields the mode-coupling formula, to be used later: 

1 (  dk 
C,(t) ~- 72 ~ [(J,, ak"aLk)] 2 exp[(zk u + zk')t] 2 (-g@) ~ (14a) 

or for its AB part 

1 f dk E (j(4, akUa~k)(aVkakU" j B) exp[(z u + z V)t] (14b) c ~ ( t )  ~ -~ ~ .~ 

The quantities ak" are the hydrodynamic modes, which for small values of 
the wave number k are given as (orthonormal) linear combinations of (the 
Fourier components of) the deviations from their equilibrium values of  the 
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microscopic energy density ek, the number density nk, and the momentum 
density gk, given by 

N 

ek = ~ e~ e x p ( - i k . r  0 - 3k,o(H> 
i = 1  

N 

nk = ~ exp(-ik.r~) - 3 k , o ( N )  (15) 

iV 

gk = ~ mvi e x p ( - i k . r 0  
t = 1  

The hydrodynamic modes themselves are 

ak ~ = ( n / k B C , ) l / 2 S k  (16a) 

ak ~ = ( f i /2p) l /2(c f f  lPk  + ~ , ' g k )  (16b) 

a~,' = (fl/p)l/2k/.gk (16c) 

where Cv = T ( O s / O T ) v  is the specific heat per particle at constant pressure 
and s is the equilibrium entropy per particle. The adiabatic sound velocity 
eo = [(Op/Oo)~]i/2. The unit vectors ~ and ~ / ( i  = 1 ..... d - 1) form a set of 
d mutually orthogonal vectors. The quantities sk and Pk are referred to as 
the entropy fluctuation per particle and the pressure fluctuation, respectively, 
and for small k are defined by 

sk  = ( 1 / n T ) ( e k  - -  hnk)  (17a) 

Pk  = (Op/Oe),ew, + (Op/On)~nk (17b) 

For small values of k the hydrodynamic modes are approximately 
orthonormal, i.e., 

(ak", ak') = 3uv (18) 

where terms of order k 2 have been neglected. In order to verify (18), one 
needs certain fluctuation formulas which are discussed in the appendix. 

The hydrodynamic eigenvalues z~" in (14) for small values of k are 
given by 

zk  ~ = - D r k  2 (19a) 

zk  ~ = - k rcok  - �89 I '~k  2 (19b) 

zg, = - v k  2 (19c) 

where Dr = ~]nCv is the thermal diffusivity, I', = (7' - 1 ) D r  + D~ is the 
sound damping constant with ~, = C v / C ~ ,  and v = ~l/p is the kinematic 
viscosity. 

We note that the mode-coupling formula may only be applied to 
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correlation functions (2) and (I0), in which the currents are orthogonal to 
the hydrodynamic variables and the unit functions, so that 

(J,, ak") = 0, (J,, 1) = 0 (20) 

and we have similar relations for J~*: and J~  separately. 
The names projected or subtracted currents refer to property (20), 

indicating that currents J~ in (3) are obtained from the energy current J ~  and 
the momentum current Jxx by projecting out the component along hydro- 
dynamic variables. Similar remarks apply to the kinetic currents in (8) and 
potential currents. One may again verify these orthogonality relations (20) 
by means of the fluctuation formulas of the appendix. If  the currents do not 
satisfy (20), the mode-coupling formula (14) does not describe the dominant 
long-time behavior of the correlation functions. 

3. A S Y M P T O T I C  T I M E  B E H A V I O R  

Let us consider the long-time behavior of the separate two mode con- 
tributions in (14). Since the two-mode amplitudes (J~, ak"a~_k) depend only 
on the directions of k and not on its magnitude [see Eq. (16)], the angular 
integrations can be carried out separately. We are then left with two types 
of contributions to (14), which behave quite differently for large times. For 
the cases (/zv) = (~s), (~H), (HH) and ( a , - . ) ,  taking (Ei~) as a typical 
example, we have 

f dk exp(-2vk2t) ~_ (21) ka-1 t-a/2 

For the cases (/~v) = (E~a), (Ha), where (aa) is taken as a representative 
example, we have 

~ ,~ ~t -a, deven (22) 
dk k a-1 exp(-2iocokt - F~k2t) _ ~ t -112 exp(_co2t/ps), d odd 

Hence, the first type of contribution (21) dominates for long times, ana we 
need only consider it further. 

In the remaining part of this section we will evaluate explicitly the 
coefficients of the t -a/2 tails for each of the correlation functions. The first 
step will be to calculate the two-mode amplitude (J~, ak"aLk) for the separate 
cases by means of Eqs. (3), (8), (12), and (16). In order to do so we need 
some fluctuation formulas, which have been calculated in the appendix. For 
the currents JA and JA r we deduce from Eqs. (A.24)-(A.26) of the appendix 

(J~, a~/a~-k) = fl- Z(TCp/rn)ltzfc~,: (23a) 

(Ja, ak~a-f,) = fl- lCo~fC~: (23b) 
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and 

(Ja K, a~,~aHk) = (Cp~ a[,~aHk) (24a) 

(Ja K, ak'~a-~,) = (aTC~,~ ak'~a-~,) (24b) 

where C~ ~ = �89 + 2)kB is the ideal gas value of the specific heat per particle 
at constant pressure, and = =-n-l(OT/On)p is the thermal expansion 
coefficient. 

For the longitudinal momentum current J~ the following results are 
obtained by virtue of (A.15), (A.18), and (A.21): 

-1( , , y - l ~ , j )  (25a) (Jz, a~,~a~k) = 2fl fc_LjC• 2c~T 

(J~' ak~a--~) = ~-~[ kx~ - ~' a------r-- 1 +c~ \-~n !.l[~176 ] (25c) 

and for the kinetic part Jz K, Eqs. (A.22) yield 

- = - 1  ~ "~ _ d - 1  (jr., a[~a2k) 28 (fcx~,k• 3,s) (26a) 

( j  K, aknaH_k ) = 0 (26b) 

(j/c, ak"a-D = fl- ~ ( ~  - d -  ~) (26c) 

Here ~ and k ~  are the x components of the unit vectors k and ~J, and we 
used the relation f~J-~• = 3~. The amplitudes for the bulk viscosity current 
J~ follow from (25) and (26) by summing over all Cartesian components and 
dividing the result by d. Since the kinetic part of the projected bulk viscosity 
current vanishes identically, the full projected current coincides with its 
potential part. The results are 

(j~,a~a~k) = f i-13, ,(  2 7 .~ - 1 )  (27a) 

(Jr akna H_ ~) = (Jz, akna H_ ~) (27b) 

(J~' ak~a:~ = fi-~[d - ~ , -  la.___T_ + con ~'~-ffn!(~176 ]~] (27c) 

In the case of the shear viscosity currents the amplitudes of 3, and J,~ along 
two hydrodynamic modes coincide, as follows from (A.23), and the result is 

(J,, a[,'a~O = (J,~, ack'a~k) = /3-~(~C~x~i~ + ~c~JC{x) (28a) 

(J,, ak~a-~) = (J,~:, a~,'a"~,) = fl-~c~k~ (28b) 
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As the final step we have to perform the angular averages in (14). Two 
properties of the unit vectors (~, [• simplify the calculations considerably. 
The first is that the d Cartesian components of the vectors [ ,  1~ 1 ..... ~ , -  ~ 
form the rows of  a d • d matrix, which describes the orthogonal transforma- 
tion for the coordinate system with basis vectors (:~, ~, ~,...) to a new coordi- 
nate system with basis vectors (~, [• ~• These rows are mutually 
orthogonal such that 

, / - 1  

f = l  

The second property, which has been derived in paper I, reads 

dk k~kak,ko = d(d + 2) 

kflB = -2-  

(29) 

(30a) 

(30b) 

where ~ ` / =  f dk is the surface of a d-dimensional sphere with radius equal 

to unity. If  we use in addition the relation for A > O, 

(~))a f dk ka_l exp(_AkZt)  = j d[~ 2 exp( -Ak  t) = (4r~At) -`/z2 (31) 

we find the following results for the long-time behavior of the correlation 
functions: 

Ca(t) ~- (v + Dr) ̀ /12 + ~ \4~rt] 

C~(t) ~- [ N~, + 

C~(t) ~- \(2v)aj2 + 

C,(t) ~- [ r , ,  
\(2v)a/2 + 

(r3 +  , gTl 

\ ! 

where we have kept the notation consistent with Ref. 2, and where 

K~H = TCp d ~  1 Co 21 
fl2m d ' K+_-~  1~ 2 d 

1 d 2 ~ 2  1 1 
L, ,  = f12 d(d + 2)' L+ _ f12 d(d + 2) 

(32a) 

(32b) 

(32c) 

(32d) 

(33a) 

(33b) 
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= 2  M~ ~ ( d -  1)( 1 7-2~-T-I ) ' 

M+_ /31. [d y-I n (8Co~]" 
= -  - ~---T- + ~ o \ ~ ] d  

1 1 [ 1 ~ C . ~  1 [Oa'~ "19. 
M H H = -~ "~ (7  - -  1) 2 1 - -  ~ \-"Zff l ~ ' + "~ \ O T I . . J 

' .-' 
N , , = ~  + 2  a ~  + d  

{ , ,[.-, [.-, 
N+_ =-~ d(d+ 2) d aT Co \-~n/.j + aT - - - -  

N n H  = MHH 

(33c) 

NAB, M AB, and L A B :  

[ Cp~  2KeH; KK+ Ir _ = [aTCr~ 2K+ (34a) 

K K~H=Cv~176 ) KK+s aTCv~ ~ ) ~Cp - 1  K,~; - =  Cp \ Cv 1 K+_ (345) 

K ~ =  [CO 1)2K, H; KS,  = [aTCpO )2 \ C ,  - ~ ~ 1 K+_ (34c) 

N,~K = - ~ ( d -  1)(d 2 - 2 ) .  N+~[ _ 2 ( d -  1) . 
d2(d + 2) ' /3 2 d2(d + 2)' NHK~ = 0 (35a) 

~- _ -~- N H H  = 0 N~* N+ Ks KS (35b) 

(1  7 -- 1~ 2. N~+r �9 s,~ (35c) 2 (d 1) _ = M + _ ,  = --  Nt~H = Mnn N~* ~ "2~7~] , 

= MH H  0 M~c M+K[ = KK = (36a) 

= - = MHH = 0 M ~  M~s KS (36b) 

= M ~ H  = MHH M~r ~ M~,; Mc+L = M+ _ ; s~ (36c) 

L~V = L,, ;  LK+ K_ = L+_ (37a) 

L~g = L~+ ~- = 0 (37b) 

L,~ = L~+~ = 0 (37c) 

The asymptotic form of the AB parts of the correlation functions with 
A and B equal to K or r can be obtained from (14b) and (23)-(28) in a similar 
way. The results can be cast in the same form as (32) by attaching superscripts 
AB to the quantities C, K, N, M, and L. We shall list the results for K AB, 

Co \-b--fi/.j j 
(33d) 
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The results (34a) and (37a) for C~r(t) and C~K(t), respectively, have already 
been obtained in paper I. 

A P P E N D I X .  F L U C T U A T I O N  F O R M U L A S  

In this appendix we will consider fluctuation formulas in the grand 
canonical ensemble, characterized by the parameters fi = 1/kBT and v = fl/z, 
where/z is the chemical potential. The fluctuation formulas considered will 
be in general of the form (ak, bk) and (J,, akb-k), and we only need to know 
such quantities for small values of the wave number Ik[. The inner product is 
defined in (12), and ak and bk are Fourier components of microscopic den- 
sities, such as given in (15). We observe that all Fourier components of 
microscopic variables for k 4 0 satisfy the relations (1, ak)=  0 due to 
translational invariance, and from the definitions (15) it follows that this 
property remains valid in the limit for small k. For the quantities of interest 
we have 

e o = H -  (H);  no = N -  (N)  
N (A.1) 

go = ~ .  v,;  J0x~ = ~x~  - <&~> 
t = 1  

or in general 

ao = A - <A) (A.2) 

For later convenience we have included in (A. 1) the longitudinal momentum 
currentjoxx, of which Jz in (3b) is the corresponding projected current. 

From the fluctuation formulas in the grand canonical ensemble, we 
deduce immediately that for any of the ao's in (A. 1) and (A.2) the following 
relations are fulfilled: 

(a0, eo) = lim V- I ( (A  - ( A ) ) ( H -  (H) ) )  =-(Oa/Ofi), 
V - ~  oo 

(ao, no) = (Sa/Sv)B 

where a = V- I (A ) .  Similarly, we find from (A.3) and (17) 

1 [(Sa) h[Sa~ ] 1 (Sa) (ao, so) = - ~  ~ ~ + ~ ,~ / , j  = - ~  @ , ,  

(A.3) 

(A.4) 
(Sp~ [Sa~ [Sp~ (Sa~ n(Sa~ 

(ao,Po) = --\8-ej,\-~fl]v + ~nJ,~TvJo = fl \ s 

In order to obtain these formulas one needs the thermodynamic identities 

ds = (1/nT)(de - h dn) (A.5a) 

dp = -(nh/fl) dfl + (n/fi) (Iv (A.5b) 
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where n, e, p, and s are, respectively, the values of the number density, the 
energy density, the pressure, and the entropy per particle in thermal equilib- 
rium, and h = (e + p)/n is the enthalpy per particle. From (A.5) one may 
obtain the relations used to derive (A.4), 

p s 

(A.6a) 

(A.6b) 

The first relation (A.6a) follows directly from (A.5). The equalities (A.6b) 
may be obtained from (A.5), (A.6a), and the Maxwell relation @[3/~n)e = 
-(0v/Oe)~. In cases where ao is a linear combination of the quantities in 
(A.1) with coefficients depending on thermodynamic parameters, we can 
apply (A.4) to each of the terms separately. This yields, e.g., 

( 1 ) 2 [  ( 8 ~ ) +  h(Ob..~)] = 1 (Sg) = kBC~ (A.7a) 
( s o ,  So)  = ~ - p , n--T , n 

1 n[(Oe) _h[On'~] n(Os)  
(so, Po) = ~-~ ~ ~n ~ ~n]~J = ~ ~-n ~ = 0 (A.7b) 

(po,t,o)=~ T e ~ V n ~  + ? -hne~8  = V n s =  /3 

where C~ is the specific heat per particle at constant pressure and Co is the 
adiabatic sound velocity. 

These fluctuation expressions suffice to verify the orthonormality rela- 
tions (18). Equations (20) can be verified if one uses in addition the virial 
theorem of equilibrium statistical mechanics in the form (Jx~) = PV and 
the relations 

(Jx ~, gox) = h(Jx '~, go,:) = nh/fl (A.8) 

which follow by direct computation. 
In the body of the paper we also need fluctuation expressions of the 

form (J~, ak~'aLk) for small values of k. Here, ak" and ak ~ are linear com- 
binations of the hydrodynamic variables (15). In order to evaluate such 
objects we consider first fluctuation expressions (ao, boco), where a0, b0, and 
co are any of the quantities in (A.1). In this case we find directly 

(ao, boeo) = -(O/a~)v(ao, bo) 

(ao, bono) = (a/a0~(ao, bo) 
(A.9) 
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Next, we consider (ao, SoSo) and replace both so's by its definition (17a) and 
apply (A.4) and (A.9); the result is 

1 2 

{ 1  ]2[{~2a] [Oa] {O2v] 1 (A.10b) 

In the transition from (A. 10a) to (A. 10b) we have written 

e ea Ov (A. 11) 

by virtue of (A.6a) and (A.3), and recombined the remaining terms into 
(A.10b). In the case of (ao, PoPo) we proceed similarly; i.e., we replace one 
Po by its definition (17b), and use (A.4), (A.6), and (A.9) to obtain 

n 2 ~v O 0/3 8 
(ao,poPo)-.-- (~)  [(~n)~(~n)s(ao, no)-(~n)~(-~n)s(ao, eo,] 

(A.12) 

Fluctuation formulas of the form (ao, soPo) can be evaluated similarly, but 
are not needed in our theory. 

Let us now use the above results for the computation of (Ji, ao"bo'), 
and start with Jz, which is given by, according to (3b) and (A.I), 

Jz = Axx - (Op/Oe),~eo - (Op/On)eno (A.13) 

By applying (A.10) and (A.12) to the linear combination (A.13) and by 
observing that the terms in (A. 10) and (A. 12) containing only first derivatives 
of a cancel exactly, we find 

(S~.SoSo) = \n~] [\aT2/,- \-gel,\-b-T-Z],- 1.anl,\aTZl,J (A.14a) 

( Jz , PoPo) = \~  ] L l -ff~n~ ] s - ~ ~-e ] ,~ ~-ff~n~ ] s - \ ~n ] e \ ~n2 ] d (A.14b) 

Equation (A. 14a) may be simplified by writing it as 

1 ~ 8p ~3n 0 c~e 
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where we have used the thermodynamic relations 

dh = r d s  + n -1 dp; "Ze ,~ c~T 

(A.16) 

= h +  tNl =h 

Here, c~ =-n-~(an/aT)~,  is the thermal expansion coefficient; C~ = 
T(as/aT)~, = (ah/aT)~, and y = C~,/C~ is the ratio of the specific heats. Next, 
we reexpress (A.14b) by using the relations 

( ~2p~ : (f..irnco~. 2mco(~_~) 
8n z ] s \ on/s s 

(~2e~ ( ~ h ) l ( ~ p ) m c o  z 
g n% = = n 

which yields 

Cv(y - 1) 
ne~2T 

(A.17) 

(Jz. go<~goa) = p 8.x 8Bx ((mVx 2 - [3-1)rnvx2)v 

-- (~e) f S.a( (2mv~ - d fl-~) Imv2>~ 
y-I 2P (8.~ 8,x 8.,) (A.21) 

70 y -  1] 
2pCo z n [~Co) 

(:" P~176 = \-ffn / 2 1 (A.18) 

A next set of fluctuation expressions (Jz, ad'ao') are those in which a0" 
and a0' involve the momentum density g0,, where c~ denotes a Cartesian 
component. 

In this case we write 

(J,, go.goa) = ({J, - (JtS~), go.goB) + ((J,)~, go.goB) (A.19) 

where (...)~ indicates that the velocity average is carried out. If we carry 
out the remaining velocity integrations in the second term on the right-hand 
side of (A.19), we find 

((Jz)~, go,goB) = fl-lrn((Jz)v, no) 8,a = 18-lm(Jz, no) 8~B = 0 (A.20) 

The inner product vanishes since the projected currents are orthogonal to 
the hydrodynamic variables, as can be verified explicitly from (3b). In the 
first term on the right-hand side of (A.19) only those terms in (J, - (Jz)~) 
survive that depend on velocity variables. After carrying out some obvious 
simplifications, we find 
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where d is the dimensionality of the system and (A.16) has been used for 
(Op/Se),.  The corresponding fluctuation expressions for the kinetic part J~  
of J~, as given in (8), can be written down directly from the previous results 
(A.14) and (A.21) by replacing (Op]Oe), by (2/d) and (~p/t3n)e by 0, and 
furthermore, by replacing in (~2a/ST2)p and (O2a/Sn2)~ the quantity a (=p or e) 
by its ideal gas values a ~ (=n / f l  or dn/2~). The result is 

(Jz K, SoSo) = (Yz r~, PoPo) = 0 

( j  K, go~goa) = (20//32)[8=. 3B. - (l/d) 8~B] 
(A.22) 

Consider now fluctuation expressions involving J, and arK, as given in (3e) 
and (8). The only nonvanishing expression can be easily obtained by directly 
carrying out the velocity integrations, yielding 

(J , ,  go,goa) = ( j r : ,  go, goB) = (p/~)(8,~ 8a~ + 8=~, 8B~) (A.23) 

The only nonvanishing fluctuation formulas involving Ja = Jx" - hJ~ ~ are 
(Ja, go,so) and (Ja, go~po). By applying (A.9) with a0 and bo respectively 
equal to Jx ~ and go,: or equal to J~" and go,, we find in a manner analogous 
to (A.4) 

and 

(Ja, go,so) = -n---T ~(J,:", go,)  + -fir (Jx ' ,  go,:) (A.Z4a) 

/3T p 
(A.24b) 

n ( O )  e n h / O \  j ,  
(Ja, goxPo) = ~ _ s (Jx ' go~) - -ff t-~n)s( x ,  gox) 

= _ nC, r- 1 )  

(A.25a) 

(A.25b) 

In the second equalities of (A.24) and (A.25) we have used (A.8), (A. 16), and 
(A. 17). The fluctuation expressions for Jz~ defined in (8) follow directly from 
(A.24b) and (A.25b) by replacing h by its ideal gas value h ~ = �89 + 2)13 -1. 
The results are 

(Ja K, goxso) = f l -  2C~~ = ( Cp~ goxSo) (A.26a) 

(Ja K, goxPo) = nC~g(y - 1)/fl 2c~ = c~T(Cp~ go,Po) (A.26b) 

where we have introduced C~ ~ = �89 + 2)kn and used the relation (OT/8n)~ = 
(T/n)(ap/Oe),  = ( 7 -  1)/em. 
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